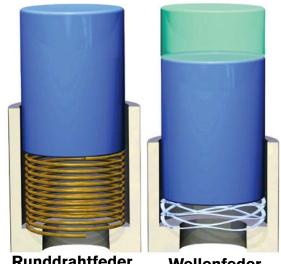


Wellenfedern

TRUSWAV

Sparen Sie Bauraum durch die Verwendung von **TRUWAVE™ Flachdraht-Wellenfedern**

TRUWAVE™ Flachdraht-Wellenfedern helfen, in der Anwendung bis zu 50% axialen Bauraum im Vergleich zum Einsatz konventioneller spiraler Runddrahtfedern einzusparen. Damit können Anwendungen kompakter gestaltet und überflüssiger Bauraum und damit überschüssiges Material bei den benachbarten Komponenten eingespart werden. Flachdraht reduziert die Blockhöhe der Wellenfeder effektiv, so dass bei gleicher Anzahl Windungen die Einbauhöhe deutlich reduziert werden kann, ohne Kompromisse bei der Vorspannkraft und dem Federweg zu machen. Weiterhin bietet sich der Vorteil, die Anzahl der Windungen im Wellenfederdesign zu erhöhen, um die Durchbiegung pro Windung beim Zusammendrücken der Wellenfeder zu reduzieren. Dadurch verringert sich die Federrate proportional zur Windungszahl und eine äußerst flach verlaufende Federkennlinie kann generiert werden.


- Verringerte Einbauhöhen
- Bis zu 50% Bauraumeinsparung im Vergleich zu konventionellen Federn

Flexible Flachdrahtherstellung

- Eigene Flachdrahtproduktion für verschiedenste Abmessungen
- Sondergüten verfügbar

Kurze Lieferzeiten

- Standardfedern ab Lager
- Keine Lieferzeiten für Spezialwerkzeuge

Runddrahtfeder

Wellenfeder

Technische Beratung

- Computergestützte Federberechnungen
- Montagelösungen

Kundenspezifische Sonderfedern

Keine Werkzeugkosten

Federeigenschaften

• Präzise Spezifizierung der Federkraft bei den jeweiligen Einbauhöhen

Qualität

• ISO/TS 16949:2009 & ISO 9001: 2008 zertifizierte Fertigung

Trotz einem umfangreichen Standardprogramm in vergütetem Federstahl und Edelstahl mit verschiedensten Dimensionen und Spezifizierungen in der Federkraft kommen einige Anwendungen nicht mit einer lagermäßig vorhandenen Flachdraht-Wellenfeder zurecht. Für diese Fälle bietet Rotor Clip die kurzfristige Fertigung kundenspezifischer Sonderfedern ohne hohe Zusatzkosten. Der von Rotor Clip angewandte Fertigungsprozess benötigt keine speziellen Werkzeuge für Sonderabmessungen, so dass die Herstellung kundenspezifischer Sonderteile dem der Standardteile entspricht.

Kontaktieren Sie die Ingenieure von Rotor Clip, um Hilfe bei der Wahl der richtigen Flachdraht-Wellenfeder für Ihre Anwendung zu erhalten. Rotor Clip's Ingenieure sind in der Lage, Ihnen anhand eines speziellen Berechnungsverfahrens die Eignung einer Standardfeder für Ihre Anwendung oder die Eigenschaften einer kundenspezifischen Sonderfeder zu erläutern.

www.rotorclip.com

Ausführungen

Einlagig

- Design mit Spalt und Überlappung.
- Erhältlich in verschiedener Wellenanzahl und Materialstärke.
- Findet Anwendung in Bohrungen und auf Welle.

Ideal für:

- Axiale und radiale Bauraumeinsparung.
- Statische und quasi-statische Anwendungen.
- Wälzlagervorspannung Reduzierung von Vibrationen und Störgeräuschen.

MST - Einlagig, Metrisch.

Ideal für Anwendungen mit kurzen Federwegen und leichten bis mittleren Federkräften. Wird in einer vielzahl an Materialstärken und Wellenanzahlen gefertigt. Konstruiert für weiten Bereich an Bohrungs- und Wellendurchmessern.

SST - Einlagig, Zoll.

Ideal für Anwendungen mit kurzen Federwegen und leichten bis mittleren Federkräften. Wird in einer vielzahl an Materialstärken und Wellenanzahlen gefertigt. Konstruiert für weiten Bereich an Bohrungs- und Wellendurchmessern.

Mehrlagig

- Design in verschiedenen Höhen und kompakter Größe.
- Federkraft, Belastung und Durchmesser nach Ihren Anorderungen.
- Erhältlich mit verschiedener Wellenanzahl und Materialstärke.
- Findet Anwendung in Bohrungen und auf Wellen.
- Nimmt nur 1/3 bis 1/2 des axialen Arbeitsspielraumes ein.
- Flache und wellige Enden möglich.

Ideal für:

- Anwendungen mit mittelschwerer und schwerer Belastung.
- Höhere Lastwechselzahlen im Vergleich zu einlagigen Wellenfedern.
- Toleranzausgleich mit großer Variabilität im axialen Bauraum.

NST- Einlagig, schmale Ausführung, Zoll.

Ideal für Anwendungen mit kurzen Federwegen und minimalen Arbeitsraum.

MWL, MWM, MWR - Mehrlagig, Metrisch. WSL,WSM, WSR - Mehrlagig, Zoll.

Wird für Anwendungen mit niedrigen Kräften und langen Federwegen eingesetzt. Je mehr Wicklungen desto kleiner die Kraft. Benötigt nur die Hälfte an Arbeitsraum als herkömmliche Spiralfedern.

Werkstoff

Jede Anwendung bietet andere Einsatzbedingungen für eine Flachdraht-Wellenfeder. Die Wahl des richtigen Werkstoffs erfolgt in Abhängigkeit von Einsatztemperatur, Kontakt zu korrosiven Umgebungsmedien und geforderter Lastwechselzahl. Rotor Clip's Ingenieure helfen Ihnen, den richtigen Werkstoff für Ihre Anwendung zu finden. Eine Übersicht über die von Rotor Clip eingesetzten Werkstoffe für Flachdraht-Wellenfedern finden Sie hier.

Standardwerkstoffe

SAE 1070-1090 Federstahl (1.1231 - 1.1273)

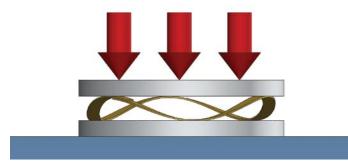
- Dieser vorgehärtete Stahl is das Standardmaterial für TRUWAVE™ Wellenfedern.
- Kostengünstige Alternative zu Edelstahl.

Sondergüten

- AISI 302 Edelstahl (DIN Werkstoff-Nr. 1.4319)
- AISI 316 Edelstahl (DIN Werkstoff-Nr. 1.4401)
- A286 (DIN Werkstoff-Nr. 1.4980)
- Inconel X-750 (DIN Werkstoff-Nr. 2.4669)

17-7 Edelstahl (1.4568 - X7CrNiAl17-7)

- höhere Belastbarkeit
- kann höheren Betriebstemperaturen (bis 350°C) ausgesetzt werden
- kein Verlust der Federkraft durch Edelstahl
- höhere Korrosionsbeständigkeit
- Elgiloy (DIN Werkstoff-Nr. 2.4711)
- Hastelloy C276 (DIN Werkstoff-Nr. 2.4819)
- Beryllium-Copper (DIN Werkstoff-Nr. 2.1247)
- Phosphor-Bronze (DIN Werkstoff-Nr. 2.1030)


Verpackung

Rotor Clip liefert Wellenfedern in einer Vielzahl an handelsüblichen Verpackungen. Auf wunsch können Wellenfedern nach Ihren Anforderungen verpackt werden.

Auswahlkriterien

Rotor Clip besitzt ein umfangreiches Standardprogramm metrischer und zölliger Flachdraht-Wellenfedern mit einer oder mehreren Windungen. In Abhängigkeit von der Anforderungen der jeweiligen Kundenanwendung muss geprüft werden, welcher Federtyp aus dem Standardprogramm geeignet oder eine kundenspezifische Sonderfeder notwendig ist. Anhand der folgenden Auswahlkriterien lässt sich einfach prüfen, welcher Federtyp am besten zur Anforderung des Kunden passt.

Geführt in Bohrung

Geführt auf Welle

FEDERKRAFT bei EINBAUHÖHE

Durch das Zusammendrücken der Flachdraht-Wellenfeder in axialer Richtung wird eine Vorspannkraft erzeugt. In der Anwendung bestimmt der axiale Einbauraum, wie weit die Feder zusammengedrückt wird. Für diesen fixen oder variablen Einbauraum können dann sehr genaue Vorspannkräfte spezifiziert werden. Bei variablen Einbauräumen muss zusätzlich berücksichtigt werden, ob es sich um eine quasi-statische Anwendung zum Spielausgleich in axialer Richtung oder eine dynamische Anwendung mit einer bestimmten Anzahl von Lastwechseln handelt, damit eine ausreichende Lebensdauer der Feder überprüft werden kann.

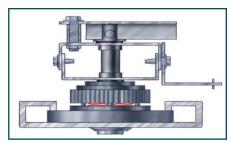
DURCHMESSER & FÜHRUNG

TRUWAVE™-Wellenfedern sind immer aus einem durchgehenden Flachdraht gewickelt. Bei Ausführungen mit mehreren Windungen sind keine geschweißten oder geklebten Verbindungspunkte vorhanden. Aus diesem Grund muss stets eine radiale Führung, entweder durch eine Welle, oder eine Bohrungswandung erfolgen. Nur so kann ein Überspringen einzelner Windungen sicher vermieden werden. Dies sollte bei der Spezifizierung der Federdurchmesser berücksichtigt werden. Neben einer genau zu spezifizierenden Führung ohne radiales Berühren der Welle oder Bohrungswandung kann ein leichtes Klemmen auf der Welle oder in der Bohrung generiert werden, um dies als Vorteil im Montageprozess zu nutzen.

ONLINE WELLENFEDERDESIGN

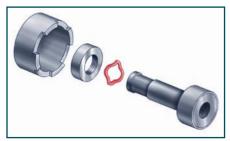
Dieses Berechnungsprogramm ermöglicht die Eingabe von grundlegenden Federund Anwendungsspezifikationen und erstellt entweder eine Referenzzeichnung die zur Angebotsanfrage genutzt werden kann oder eine Fehlermeldung falls die Feder mit den gebebenen Parametern nicht machbar ist. Somit weiß der Konstrukteur sofort ob das Design oder die Anwendung angepasst werden muß und kann so das fast fertige Federdesign mit unseren Federexperten fertigstellen.

Das Berechnungsprogramm finden Sie im Internet unter: www.rotorclip.com/wsc



www.rotorclip.com

Anwendungen von Wellenfedern

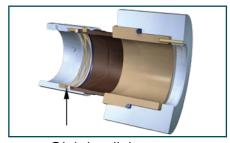

Sportschuhe


Rolltore

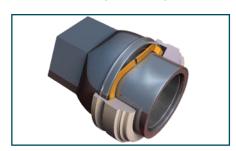
Taschenlampen

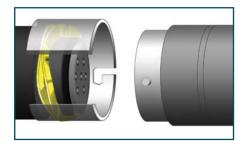

Sprinkleranlagen

Automotive-Spiegel

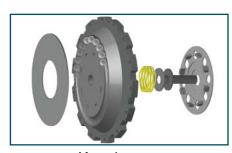

Nachtsichtgeräte

Zentrifugalpumpe


Airbag Anwendungen


Gleitringdichtungen

Airbag Inflator


Quick Connect

Bajonettsteckverbinder

Seitenspiegel

Kupplungen

Anforderungsbogen für TRUWAVE™ Wellenfedern

Durch den Walz-Wickelprozess in der Wellenfederherstellung kann auf teure Werkzeuge verzichtet werden. Dadurch haben Sie die Möglichkeit, schnell und ohne hohen Kostenaufwand kundenspezifische Sonderfedern zu erhalten, falls in Ihrer Anwendung kein Standardteil zum Einsatz kommen kann. Bitte tragen Sie Ihre Anforderungen in diesen Anforderungsbogen ein und senden ihn an uns zurück.

Bitte tragen Sie Ihre Antorderung Fax: +49 (0)6126 - 2273619 Ei	gen in diesen Anforderungsbogen e mail: rcgmbh@rotorclip.com	in und senden ihn an uns zurüd	ck.		
Kontaktdaten					
Name:		Datum:			
Firma:		Abteilung:	Abteilung:		
Strasse:		Hausnummer:			
PLZ / Ort:		Land:			
Telefon:	Fax:	E-Mail:	E-Mail:		
B !! E'!					
Radiale Führung					
Mehrlagige Flachdraht-Wellente Bitte geben Sie eine mögliche i	edern müssen radial geführt werden radiale Führung an:	, um ein Uberspringen der Wir	ndungen zu vermeiden.		
Bohrungsdurchmesser:	[mm]	Wellendurchmesser:	[mm]		
☐ Geführt in Bohrung ohne rad		AAA			
☐ Geführt durch Welle ohne ra	adialen Kontakt		Geführt auf Geführt in		
\square Leicht klemmend in Bohrung) *	VVV	der Welle der Bohrung		
☐ Leicht klemmend auf Welle					
*n	icht bei mehrlagigen Ausführungen möglich		<u> </u>		
Kraftspezifizierung					
Bitte definieren Sie die Kräfte, d	die bei den Einbauhöhen erreicht w	erden soll:			
Stati	scher Einsatz	Dynamis	Dynamischer Einsatz/ Toleranzausgleich		
		[N]	bei[mm]		
	[mm] Einbauhöhe	Kraft 1 (Min. / Max.)	1. Einbauhöhe		
[N] hai			1. Linbaulione		
Kraft (Min. / Max.)					
Mait (Mill. / Max.)	Linbadrione		bei [mm]		
		Kraft 2 (Min. / Max.)	2. Einbauhöhe		
	Unbelastete Höhe:	[mm] □min. □m	nax.		
Lebensdauer					
Bitte geben Sie an, wie viele La	istspiele die Wellenfeder ertragen s	oll:			
☐ Statische Anwendung	☐ 10 ⁵ Lastwechsel	□ > 10 ⁶	☐ > 10 ⁶ Lastwechsel		
☐ < 10 ⁴ Lastwechsel	☐ 10 ⁶ Lastwechsel				
Eincotahodinaungan					
Einsatzbedingungen	agungan untor dou die Waller fa dan	oingoodst words a selle			
	ngungen, unter der die Wellenfeder °C / °F	eingesetzt werden soll:			
Max. Temperatur:	U / 'F				

Max. Temperatur: Kontaktmedium:

Anforderungsbogen für TRUWAVE™ Wellenfedern

		ii iui ikov	VAVE V	renemeuem	
Ausführung Eine Windung mit Spalt	Eine Windung mit überlappende Enden	Mehrere Windungen mit gewellten Enden	Mehrere Windungen mit parallelen Enden		
Material (Standard)					
☐ Federstahl (SAE 1070 – 10	090)		17-7PH Condition CH900 Edelstahl (DIN Werkstoff-Nr. 1.4568)		
□ AISI 302 Edelstahl (DIN Werkstoff-Nr. 1.4319) □ Elgiloy (DIN Werkstoff-Nr. 2.4711) □ AISI 316 Edelstahl (DIN Werkstoff-Nr. 1.4401) □ Hastelloy C276 (DIN Werkstoff-Nr. 2.4819) □ A286 (DIN Werkstoff-Nr. 1.4980) □ Beryllium-Kupfer (DIN Werkstoff-Nr. 2.1247) □ Inconel X-750 (DIN Werkstoff-Nr. 2.4669) □ Phosphor-Bronze (DIN Werkstoff-Nr. 2.1030)					
Oberflächenausführung					
☐ Fettfrei & Ultraschallgereinigt (Edelstahl) ☐ Ges		iche: Vibrationsgeschliffen Geschwärzt Manuell Entgratet	mit µm Abtragsrate		
Mengen		Lieferzeit			
			Prototypen: Serie:		
Beschreibung der Anwen	dung / Skizze				

Rotor Clip GmbH®

Buchwiese 3, D-65510 Idstein/Taunus, Deutschland +49 (0) 6126 227360 • Fax: +49 (0) 6126 2273619 E-mail: rcgmbh@rotorclip.com

www.rotorclip.de

Rotor Clip Company, Inc.® - World Headquarters 187 Davidson Avenue, Somerset, NJ 08873, U.S.A.

1-800-557-6867 • +1 732-469-7333 • Fax: +1 732-469-7898 www.rotorclip.com

Rotor Clip Czech a.s.

Pražská 403, CZ-411 18 Budyně nad Ohří, Tschechische Republik +420 416 863 168 • Fax: +420 416 863 193 e-mail: rotorclipcz@rotorclip.com

www.segnor.cz

Rotor Clip Limited®

Unit 6, Meadowbrook Park, Holbrook, Sheffield, S20 3PJ United Kingdom +44 (0) 114 247 3399 • Fax: +44 (0) 114 247 4499 e-mail: rcltd@rotorclip.com

www.rotorclip.co.uk

Rotor Clip China

Room 1510~1511, JH Plaza, 2008 Huqingping Road Shanghai, 201702 People's Republic of China e-mail: rcchina@rotorclip.com

